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Modal Response of Trapezoidal Wing Structures Using Second Order Shape Sensitivities
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Introduction

The modal response of wing structures is very important for assessing their dynamic response including

dynamic aeroelastic instabilities. Moreover, in a recent study _ an efficient structural optimization approach

was developed using structural modes to represent the static aeroelastic wing response (both displacement

and stress).

Sensitivity techniques are frequently used in structural design practices for searching the optimal

solutions near a baseline design 2.3 . The design parameters for wing structure include sizing-type variables

(skin thickness, spar or rib sectional area etc.), shape variables (the plan surface dimensions and ratios), and

topological variables (total spar or rib number, wing topology arrangements etc.). Sensitivities to the shape

variables are extremely important because of the nonlinear dependence of stiffness and mass terms on the

shape design variables as compared to the linear dependence on the sizing-type design variables.

Kapania and coworkers have obtained the first order shape sensitivities of the modal response,

divergence and flutter speed, and divergence dynamic pressure of laminated, box-wing or general

trapezoidal built-up wing using various approaches of determining the response sensitivities 4-8. In this

paper, the modal response of general trapezoidal wing structures is approximated using
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shape sensitivities up to the 2nd order. Also different approaches of computing the derivatives are

investigated.

Shape Sensitivities

For a trapezoidal wing, there are four major independent shape variables: l) sweep angle A, 2) aspect

ratioa , 3) taper ratio z, and 4) plan area A. All the other dimensions of the wing plate configuration can

be calculated using these parameters such as:

s = .qr-_, a = 2_/a(l + r),b = 2s/a(1 + r) (1)

where s is the length of semi-span, a and b are the chord-length at wing tip and root respectively, as

shown in Fig. 1.

The sensitivities for the design parameters at a baseline design point indicate trends of variation of the

design near the baseline point if the parameters are perturbed. Usually, only the first order derivatives are

used. For more accurate results, second order derivatives can used:

f(xi,x 2 x" x 12 ",'", )=-f( o, )+2(xi-xo) f(x_ 2 ,XO,'",X 0 ,Xo,'",X 0 )

i=1

(2)

+_ (x i x o) f(Xo, 2 "-- X 0 , • .. _ X 0 )

_ i=l

Equivalent Plate Analysis (EPA) of Trapezoidal Wing Structures

In Kapania and Liu 9, a general method is presented to analyze trapezoidal, built-up wing structures. The

method is based on the Reissner-Mindlin model, a First-order Shear Deformation Theory (FSDT). Free

vibration and static response are obtained using the Ritz method. Compared with the methods in Kapania

and Lovejoy _0and Cortial '_ , the formulation of this method is such that there is no limitation to the wing

thickness distribution. As shown in Ref. 9, the method shows a good performance for both static and

vibration problems in comparison with the FEA using MSC/NASTRAN.



Due to its efficiency in determining the natural frequencies and mode shapes of wings, the Equivalent

Plate Analysis (EPA) described above can be used to investigate the variation of modal response, that is, to

evaluate the shape sensitivities of trapezoidal wing structures under shape changes. For the performances of

the baseline design, EPA can still be used, or FEA using a commercial package such as MSC/NASTRAN

can be utilized for better accuracy.

Approaches of Shape Variable Sensitivity Evaluation

There are generally two kinds of methods for the solution of sensitivity derivatives: the finite difference

approach and the analytical approach. A finite difference approach is very simple to formulate and

implement, but is numerically in-efficient and is sensitive to the step-size used. A too-large step size usually

causes significant truncation errors and a too-small step size may lead to large round-off errors. As a result,

the more elegant and accurate analytical approach is used as far as it is possible. But for some problems with

complex formulation, the derivation of analytical derivatives is too formidable to handle manually, unless

Automatic Differentiation (AD) is used _2._3

The finite difference approaches can be constructed on the basis of the following formulas:

f'(x) - f(x + Ax) - f(x - Ax) + O(Ax 2 ) (3)
2A,x

f"(x) = f(x + Ax) - 2f(x) + f(x - 2tx) + O(_ 2 ) (4)
_x 2

where

6x = e. x (5)

in which e is the relative step size, and hereafter it is simply called the step size.

The analytical approaches for shape sensitivities of modal response can be based on the following

equation

3[M] I32i rf_[K]
_ _i_ (6)



where 6 is the shape variable, [K] and [M ] are the stiffness and mass matrices of the wing structure, ,;t,and

{¢, } are the i -th eigenvalue and eigenvetor, and {q_i} is mass-normalized such that {¢, }r [M] {_, } = I. The

derivation of Eq. (6) can be found in Ref. 14.

The major difficulty of applying Eqs. (6) lies on the calculation of o{x)_'_o and a{u)_'ao. For instance,

consider _tK)_'_e. According to Ref. 9, the stiffness matrix [K] is formulated as an integral

txl= f_f.ftcFtrl't,oltrltcwv=f, f._,tq' 'trlTtoltrJlJlazcw¢cm=j ,j_,tcl tGJtcw;a,7(7)
V

where only the inner part [G] = _' [T] r [D][T]JJ dz is a function of the shape variables, and the Gaussian

quadrature is used to obtain the integration on _ and r/. Therefore,

/)[K] , , (3[G])rCld,ndn) -., (8)

in which aw 1,,_'_o can either be determined analytically or numerically.

Often people make use of the advantages of both thefinite difference and analytical approaches in

different stages of obtaining some complicated sensitivities. While trying to use the analytical approach as

much as possible, in other parts of the process the finite difference is used, as in the case of Ref. 8. This

kind of approach is usually called semi-analytical. For the second order sensitivities, there can still be three

kinds of approach as specified above. While the formulation for the analytical approach is becoming even

more complicated, a scheme as simple as Eq. (4) can be used for the finite difference approach.

Examples and Discussion

Particulars of the baseline wing structure are as follows: the sweep angle A = 30 ° , the aspect ratio

a = 3.5, the taper ratio z = 0.5, the plan area A = 5832in 2 . There are 4 spars and 10 ribs distributed

uniformly under the skins. Details of wing sections, particulars of the skin thickness and dimensions of the

spars and ribs can be found in Ref. 9. The wing is clamped at the root.
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The effect of step size on the finite difference approach for sensitivities was investigated for all the four

shape variables. The case with the taper ratio is shown in Fig. 2. From all the cases, it is found that for the

best results for both the 1st and 2 "d order sensitivities, the step size £ defined in Eq. (5), should be between

0.005-0.015 and for fairly accurate results £ can be between 0.0017-0.005.

To evaluate otc l/_'_0 analytically proved to be formidable except only in some simplified cases. In order

to compare the sensitivities using the analytical, semi-analytical and finite difference approaches, a special

case of the above baseline wing with a constant thickness distribution was considered so that the analytical

derivation of otc>_'_e in Eq. (8) is not formidable. When E is specified as 0.005, it is found that for the I st

order sensitivities to the four shape variables ( A, a, z, and A ) the relative difference (averaged for the first

10 modes) between the finite difference and analytical approach is 0.003%, 0.003%, 0.002% and 0.003%

respectively. The relative difference between the semi-analytical and analytical approach is 0.14%, 0.04%,

0.02% and 0.01% respectively. Since the analytical approach gives the exact sensitivities, in this case the

finite difference approach is more accurate than the semi-analytical one, however both the approaches yield

quite accurate results.

For the original baseline wing, since the derivation of the analytical derivatives for atcl/_'ao is formidable,

only the comparison of the 1st order sensitivities using the finite difference and the semi-analytical approach

was made. It is found in this case the sensitivities to the four shape variables using both the approaches are

quite close, the average differences for the first 10 modes being in the range of 0.5-1.4%. As an example,

the 2"d natural frequency w.r.t. A is shown in Fig. 3(a), where it can be seen that the Ist order sensitivities

using the finite difference and the semi-analytical approaches almost coincide with each other. On the other

hand, sensitivities to the sweep angle A using the two approaches have had large relative differences

especially for modes whose sensitivity to A is small. One such example, the sensitivity of the 3 rd natural



frequencyw.r.t. A, is shownin Fig. 3(b).Hereattentionshouldbepaidto thescalefor thevertical

coordinateto seehowsmallthesensitivityto A is.

It isobservedin Fig. 3(b)thatthefinite differenceapproachhasabetterperformancethanthesemi-

analyticalone.In fact, in someextremecases,the linearapproximationusingthefirst ordersensitivity

obtainedusingthesemi-analyticalapproachis notat all tangentto theactualvariationat thebaselinepoint.

This is not thecasefor thefinite differenceapproach,if thestepsizechosenis not too large.Moreover,the

computationefforts for both theapproachesareat thesamelevelsincein bothcasescalculationof the

stiffnessandmassmatricesat thebaselinedesignandtwo perturbeddesignsshouldbeperformed.

It is obviousfromobservingFig.3thattheapproximationusingsensitivitiesup to thesecondorderhas

muchimprovedtheresultscomparedwith thecasewhereonly thefirst ordersensitivityis used.Also it can

beseenthatthesecondordersensitivitiesusingthefinite differenceschemeof Eq. (4) arefairly accurate,at

leastfor thepurposeof engineeringapplication.SinceEq.(4) sharestheperturbationdatawith thefirst

ordersensitivityscheme,Eq. (3), thereforeits evaluationrequireslittle additionaleffort.

Conclusion

Modal response of general trapezoidal wing structures was investigated based on an equivalent model

analysis and sensitivity techniques. The use of second order sensitivities proved to be yielding much better

results than the case where only first order sensitivities are used. Shape sensitivities can be evaluated using

analytical, finite difference and semi-analytical approaches. The present research shows that when the

analytical solution is not available, the finite difference approach would be a better choice than the semi-

analytical one provided the step size is properly specified.
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Fig. 1 Plan configuration of a trapezoidal wing
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Fig. 2 Effect of the finite difference step size on the sensitivities



of various natural frequencies to taper ratio
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Fig. 3 1 't and 2 _d order sensitivities of a wing

a) The 2 nd natural frequency w.r.t, wing plan area



b) The 3rdnatural frequencyw.r.t, wing sweepangle
Fig. 1 Plan configuration of a trapezoidal wing

Fig. 2 Effect of the finite differencestepsizeon thesensitivitiesof various natural frequenciesto

taper ratio

Fig. 3 1st and 2 nd order sensitivities of a wing

a) The 2 nd natural frequency w.r.t, wing plan area

b) The 3 _d natural frequency w.r.t, wing sweep angle
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